SHI-Group Service!

PROTON IMPLANTER

Under development

SERVICE FLOW

TEST IMPLANTATION DESIRED

CONDITION SELECTION

SHIPMENT

IMPLANTATION

RETURN

EQUIPMENT PURCHASE DESIRED

SPECIFICATION REVIEW

SHIPMENT

START-UP

AFTER SALES

We support you from prototyping to equipment sales!

Unlock New Possibilities in SiC with Proton & Helium Implantation

From lifetime control to isolation layers tailored solutions for your devices

APPLICATIONS

SF-KHIITM

Suppresss stacking fault expansion

Lifetime Control

Optimize carrier lifetime for power devices

Isolation Layers

Create precise buried insulating regions

PARAMETER

Parameter	Specification	
Energy Range	0.26 - 8 MeV	
Ion Depth	0 – 350 µm	
Wafer Size Support	6 – 12 inches	

WHY CHOOSE US?

Accelerating Energy

From shallow to ultradeep implantation

Scalability

Flexible support from prototyping to hig-volume

Ion Implantation into Power Devices

Get To Know Us

- Contract processing service!
- Implanting proton and helium ions!
- 3 High-energy ion implantation!

Accelerator Spec.

Cyclotron Spec.	Gas	lon	Energy	Into SiC (µm)	FWHM (µm)
	Hydrogen	H ⁺	2MeV	0~29	1
		H ⁺	4MeV	0~113	4
		H ⁺	8MeV	0~320	11
	Helium-3	$^{3}\text{He}^{2+}$	23MeV	0~229	4
	Helium-4	⁴ He ² +	17MeV	0~114	2
Tandem Spec.	Hydrogen	H	0.26~2.40MeV	1.6~43.0	~1.7

SF-KHIITM

Stacking Fault Knocking-down by High-energy Ion Implantation

The SiC Reliability Revolution!

Ion implantation inhibits defect growth.

In lon implantation is possible from the backside

Checking validity

Expanded SF densities for the PiN diodes with and without proton implantation after the electrical stress.

EL images

If the amount of ion implantation is increased, the black shadow will no longer occur.

Reactive Nion

Negative atomic oxygen (O⁻) Ion irradiation equipment

Mechanism of Negative Atomic Oxygen (O⁻) Ion Generation and Irradiation

- 1. High-density negative atomic oxygen (O⁻) ion generation by low-pressure arc plasma
 - √ Mix of novel technology in generating O⁻ and the pressure-gradient type plasma generator that can penetrates oxide layers strongly.
- 2. Highly reactive oxidation treatment by irradiation of negative atomic oxygen (O⁻) ion.
 - √ High reactivity is due to application of bias voltage.
- 3. Low temperature and no charging treatment
 - √ Neutralization reaction is endothermic.
 - ✓ No charging treatment and no other ion source is required.

Low-Temperature Oxidation Treatment of SiC Wafer

From TEM [cross-sections/ oxide layer thickness vs treatment temperature]

- √ Oxidation of SiC requires heating to more than 900°C.
- ✓ Irradiation of O⁻ makes the formation of SiO₂ layer without heating.
- ✓ At room temperature and 350°C, the interface between SiO₂/SiC is extremely smooth.
- From XPS [Depth Profile of the oxide layer]

- ✓ Compared to heat oxidation, the change of the interface between SiO₂/SiC is rapid.
- √ From TEM cross section and depth profile, we can confirm that the smooth interface between SiO₂/SiC was formed (the characteristics are on research).
- **★Low-Temperature** formation of Oxide Layer
- ★Smooth Interface formed between SiO₂/SiC

Low-Temperature Oxidation Treatment of Si Wafer

★Low Temperature formation of oxide layer. **★**Back-End Process (layer formation) is also possible

Specifications Up to 8 inch Substrate $(\phi 200 \text{mm})$ size Up to 800 °C **Substrate** temp Max. Less than 5.0×10^{-5} Pa vacuum Approx. $0.2 \sim 1.0 \text{ Pa}$ Pressure during treatment ~100 V Bias voltage O_2 , Ar (NH₃, CH₄ on Carrier research) gas

Leaflet

Contact: masahiro.kaichi@shi-g.com

